Exertional Compartment Syndrome of the Forearm in an Elite Flatwater Sprint Kayaker

Dana P. Piasecki, MD, Dominick Meyer, and Bernard R. Bach Jr,* MD
From the Division of Sports Medicine, Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois

Keywords: chronic exertional compartment syndrome; kayaking; forearm; fascial release

Chronic exertional compartment syndrome (CECS) is a potentially debilitating entity among athletes across a variety of sports. Defined as an intermittent and reversible pathologic elevation of compartment pressures following exertion, it has been best recognized in the lower extremities. Only rarely has CECS been reported in the upper limbs, with just 25 reported cases of exertional compartment syndrome in the forearm. Where noted, the majority of these reported cases involve activities that place substantial demands on the forearm musculature, including manual labor, motorcycle racing, tennis, rock climbing, and weight lifting.

We report a novel case of CECS in an elite flatwater kayaker, discuss this patient’s management, and present a review of the literature.

CASE REPORT

A 27-year-old left-hand–dominant Olympic flatwater kayaker was seen at our office with complaints of left forearm weakness and pain over the preceding year. Painful forearm swelling, fatigue, and intermittent ulnar-sided hand paresthesia were noted to gradually develop in association with training activities—as well as off-season tennis—and without preceding injury. Symptoms occurred essentially only after exertion, particularly during training episodes, and were relieved by rest. Over time, a mild degree of discomfort was noted even between exertional episodes. These symptoms were significantly limiting with respect to the patient’s ability to train and compete. No right-sided symptoms were reported.

On physical examination, full active and passive motion of the left wrist and elbow were appreciated and there was no bony tenderness. The left upper extremity was grossly neurovascularly intact, without findings to suggest any nerve entrapment syndromes, including ulnar nerve compression at the elbow or wrist. Mild symptoms of pain and weakness were reproduced by resisted volar wrist flexion and ulnar deviation, as well as forearm pronation, but not supination. Diffuse tenderness and fullness were noted over the flexor muscle compartments, and slight weakness was appreciated with respect to volar wrist flexion when compared with the opposite side. No extensor forearm findings were appreciated. Forearm circumference, measured 7.5 cm distal to the medial epicondyle, was 30.0 cm on the right and 30.8 cm on the left. After 5 to 10 minutes of resisted left forearm exercises with weights, symptoms were accurately reproduced, with worsened forearm tenderness and fullness on examination and increased measured left forearm circumference (31.2 cm). Plain films of the elbow and forearm were normal, without any evidence of stress fracture or other abnormality.

A diagnosis of CECS of the left forearm was made based on these findings, and the patient opted for compartment release. In the holding area before surgery, the patient was asked to perform resisted forearm exercises for 5 to 10 minutes. After this, the left forearm was prepared and draped appropriately in the operating room and an arm tourniquet was inflated. A 7- to 8-cm midvolar forearm incision was made sharply (Figure 1). Subcutaneous tissues were mobilized, and the medial antebrachial cutaneous nerve was identified and protected. The superficial fascia was identified and was divided using a carpal tunnel fascial plane from the lacer-tus fibrosus proximally to within 2 cm of the wrist crease distally. Discrete, tight fibrous bands were noted in the pronator teres–flexor carpi radialis interval and were released under direct visualization. The forearm musculature was noted to bulge appreciably after fasciotomy and release of these bands. Complete visualization (and palpation) of the fasciotomy both proximally and distally demonstrated no residual fascial constriction, and there was no persistent tense muscular swelling—superficially or deep.

*Address correspondence to Bernard R. Bach Jr, MD, Director, Division of Sports Medicine, 1725 W. Harrison St, Suite 1063, Chicago, IL 60612 (e-mail: brbachmd@comcast.net).

No potential conflict of interest declared.

References 1, 2, 4, 8-14, 16-18, 21, 24-29.

The American Journal of Sports Medicine, Vol. 36, No. 11
DOI: 10.1177/0363546506324893
© 2008 American Orthopaedic Society for Sports Medicine
exist multiple potential fascial enclosures. Frober and Linsm® defined 3 dorsal compartments (ulnar extensor, dorsal extensor, and radial) and Chan et al® have defined 3 volar compartments (pronator quadratus, superficial, and deep flexor). Although each potential compartment must be considered in evaluating patients with suspected forearm CECS, the majority of published cases involve the superficial and deep flexor compartments,® with a smaller group reporting isolated extensor compartment syndromes® or both.® Roughly one-third of the reported cases involve both forearms.® Our patient's unilateral CECS involving predominantly the superficial flexors would be in keeping with the most common reported anatomic distribution (ie, flexor vs extensor). It is interesting that during our surgical release, we noted particularly dense fibrous bands superficially at the flexor-pronator interval. Although we did not directly measure deep volar compartment pressures in this patient (palpably soft at the time of surgery), we believe the superficial flexor-pronators were exclusively involved, a finding reported only once previously.®

Reported activities among patients with forearm CECS carry the common theme of placing significant demands on the forearm musculature, including manual labor,® motorcycle racing,® tennis,® rock climbing,® and weight lifting.® Our report of forearm CECS in an elite, Olympic-level flatwater kayaker is the first we are aware of but is consistent with these prior reports given the considerable demands flatwater kayakers place on their forearms—particularly the volar compartments, through which the majority of load is transmitted during the sprint stroke.

Among the reported cases of forearm CECS, the classic presentation is one of forearm pain, often with associated weakness, during and shortly after forearm exertion. In all but 2 reports of acute exertional syndromes,®® forearm symptoms are noted to resolve shortly after the offending activity is terminated, as was generally the case with our patient. It is interesting to us that this syndrome developed in our patient late in his kayaking career. Despite years of intense training with likely similar kayaking mechanics, his symptoms developed only in the year preceding his presentation. Although this would appear to be the typical (yet unexplained) presentation for CECS,® we postulate that the late development of CECS in our patient may have been the result of a prior forearm injury in which the fibrous bands noted at surgery developed secondarily.

Physical examination findings in forearm CECS classically include swollen, tender compartments shortly after exertion (symptoms reproduced with provocative forearm exercise), but with otherwise normal findings.®®® Our patient's findings were consistent with this reported presentation, with isolated volar compartment swelling and pain. We found it useful to document both reproduction of symptoms as well as increases in forearm circumference following exertion.

Because of the rarity of forearm CECS, other potential causes of forearm pain and weakness should be considered.

---

References:
1. References 1, 2, 3, 4, 8-14, 16-18, 21.
2. References 1, 2, 4, 8-14, 16-18, 21, 24-29.

---

Figure 1. A midvolar approach was used to expose the superficial flexor-pronator compartment. Compartment release was performed beyond the incision both proximally and distally, after which the muscles in this compartment were seen to expand dramatically. Direct palpation of the deep volar compartmment through this incision demonstrated normal muscle turgor and hence was not thought to require release.

Because of the exceptionally low muscle turgor in the deep compartment, a decision was made to not perform further releases. Routine skin closure was performed after dropping the tourniquet and achieving hemostasis.

At the first postoperative visit, the patient reported immediate relief of preoperative rest symptoms. After suture removal, early motion of the left wrist and forearm were encouraged, and a supervised therapy regimen consisting of wrist and forearm stretching and strengthening and a gradual return to training activities was undertaken over the next 4 to 6 weeks. At 2-year follow-up, the patient reported complete and persistent relief of his preoperative complaints, symmetric right and left grip-strength measurements, and an unencumbered return to full-time flatwater kayaking training and competition at the Olympic Training Center.

DISCUSSION

Because of its typically benign presentation, CECS is often a difficult diagnosis to make but one that can significantly affect both athletic performance and quality of life. To date, the published literature has focused primarily on the recognition and management of the more common lower extremity CECS.®®® However, a growing collection of primarily case report data have brought attention to CECS in the forearm. To our knowledge, only 25 cases of forearm CECS have been reported.®®®

Anatomically, forearm compartment anatomy is more complex than in the lower extremity. Because fascial divisions are less distinct in the forearm—a number of muscular planes connecting 1 "compartment" to another—there
Potential mimics of CECS of the forearm in athletes include ulnar stress fracture and nerve entrapment syndromes, which can usually be diagnosed based on meticulous history, physical examination, and—depending on clinical suspicion—supplemental bone scan and/or electromyographic studies. In our patient, the history and physical examination findings did not suggest other diagnoses.

Some authors have advocated direct measurement of forearm compartment pressures—before, during, and after exercise—as a means of confirming the diagnosis of CECS. Unfortunately, compartment pressure measurements in the exertional setting are problematic as the sole means of diagnosis, largely because it has been difficult to define an absolute threshold pressure measurement above which CECS is defined. Normal exertional pressures have been reported as high as 90 mm Hg and CECS exertional pressures as low as 25 mm Hg. This variability is not surprising given differences in pressure readings based on the depth of needle insertion, the intensity of muscle contraction, and the timing of measurement after onset of exercise. Overall physiologic conditioning may also play a role, affecting both the potential maximum compartment pressures and muscle tolerance. Because of this variability, we would not consider compartment pressure measurements to be necessary in the diagnosis of CECS, and would agree with other authors who view these measurements as only helpful adjuncts to the more important history and physical examination.

Among the published reports of treatment for CECS of the forearm after failure of activity modifications to control symptoms, release of all involved compartments has been the treatment of choice. Where described, the majority of reports on CECS describe vascular and/or dorsal cutaneous incisions through which fascial divisions may be extended proximally and distally. Given the focal involvement of the superficial flexor compartment in this case, we were able to perform a complete release through a single, small midvolar approach (see Figure 1). We also found it useful at the time of surgery to have our patient exercise just before the surgical release, with confirmation of fascial entrapment by the significant bulging that occurred after fasciotomy; this allowed us to focus our compartment release to the superficial flexors. Given that the very nature of CECS typically does not involve clinically elevated pressures at rest, we feel immediate preoperative exertion is an easy way to ascertain which compartments need release at the time of surgery. It is noteworthy that in this case, the dramatic difference in palpable muscle turgor between the superficial and deep compartments convinced us that release of the deep compartment was unnecessary. We do acknowledge, however, that had there been any question of deep compartment involvement, further releases would have been advisable.

Among the 25 reported cases of forearm CECS, where outcomes are referenced, the vast majority of patients have symptom relief after complete fasciotomy of the involved compartments. This was the case with our patient as well, who was both relieved of his symptoms and able to return to elite-level training and competition postoperatively.

REFERENCES


